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Abstract

Regions of enhanced cold plasma, isolated from the main plasmasphere

along the Explorer 45(S 3 -A) orbit on the equatorial plane, have been

detected using the sheath induced potentials seen by the electric field

experiment. The occurrence of these regions has a strong correlation with

negative enhancements of Dst, and their locations are primarily in the

noon-dusk quadrant. The data support the concept that changes in large

scale convection play a ddminant role in the formation of these regions.

Plasmatails that are predicted from enhancements of large scale convection

electric fields in general define where these regions may be found. More

localized processes are necessary to account for the exact configuration

and structure seen in these regions and may eventually result in detachment

from the main plasmasphere.
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Introduction

Regions of cold plasma that appear to a satellite cutting across

L shells to be detached from the main plasmasphere have been observed

in or near equatorial regions on OGO's 3 and 5. Chappell, et al.,

(1970, 1971) found 41 dayside instances in the 0GO-5 data when the plasma

density rose above 10 ions/cm3 outside the plasmapause with 76%o of them

occurring in the 1242-1920 L.T. sector. Most were observed between

L = 5 and 9 after periods when Kp had been above 3-. They postulated the

occurrence of these "detached" regions in terms of a convective flow

concept in which regions would be peeled and detached in the afternoon

sector by variations in the magnitude of the convective electric field.

Similar profiles of a density enhancement outside the main plasmasphere

were observed on OGO-3 by Taylor et al., (1970) near the bulge at the

dusk meridian. Chappell et al., (1971) also reported several instances in

the dusk-midnight quadrant and 3 instances near 0300 local time.

Taylor, et al. (1971) used conjugate enhancements within 
the ion

trough at the foot of the field lines and a convection model (GrebowSky,

1970) to deduce a concept of a corotating plasmatail 
attached to the main

plasmasphere. This large scale convection model has been improved 
and

compared with the 000-5 data of Chappell et al., (1971) by Chen and

Grebowsky (1974) and to the OGO-4 trough data by Chen et al., (1973).

Their model uses a Kp dependent convection field and traces the motion

of flux tubes backward in time to determine how long since they 
had been

outside 10 Re (hence, open: allowing loss of the cold plasma). With

any significant enhancement of Kp the model consistently 
predicts cold

plasmatails, which more or less corotate with the earth as 
activity

decreases. Plasma is convected toward the magnetopause in the afternoon
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quadrant as the increased electric field, creating the rise in Kp,

reconfigures the plasmapause to lower L shells. As long as continuous,

slowly varying electric fields are used, the tail will remain attached

to the plasmasphere until it becomes too tenuous to exist. In considering

evidence of these isolated regions that involve the ionospheric trough a

certain element of question evolves as to the exact relationship between

the plasmapause and the trough.

Explorer 45(S 3-A) has provided new observations of isolated cold

plasma regions in the equatorial plane. Using Explorer 45 data,

Barfield et al., (1974) found during a large substorm in the main phase

of a major magnetic storm that a reconfiguration of the plasmasphere

occurred near the plasmapause resulting in the satellite suddenly entering

a region of low density while inbound and then returning inside the plasma-

sphere. The inner edge of the plasma sheet moved past the satellite with

field aligned currents developing, depleting or possibly energizing the

cold plasma. The lower density region was assumed to be a result of

these effects of the hot-cold plasma interaction. On the next orbit an

isolated plasma region was observed.

In this brief report we will present other examples of isolated

regions of cold plasma found in the Explorer 45 data and comment on their

possible means of origin.

Observations

No quantitative cold plasma measurements were made on Explorer 45;

however, the short baseline of the DC electric field experiment caused the

sensors to be influenced by spacecraft sheaths at low plasma densities. The
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resulting sheath induced potentials were controlled by the characteristics

of the sheath, thus making them sensitive to ambient plasma density and

temperature changes. Model calculations and comparison to VLF data have

established that the point where these sheath induced potentials saturate

the detector is a good indication of the plasmapause (Maynard and Cauffman,

1973; Cauffman and Maynard, 1974). The sheath model also predicts that

the saturation voltage is primarily a function of density (Cauffman and

Maynard, 1974). From comparison with whistler derived densities in the

equatorial plane (Morgan and Maynard, private communication), the most

probable density at saturation is of the order of 30 el/cc
3 .

Figure 1 presents data from Explorer 45 for orbit 1099 on Nov. 1 1972,

during a large magnetic storm. As the satellite spins a "simusoidal" varia-

tion is seen on the detector from the sheath potentials or, in the vicinity of

L = 2, from V x B electric fields. The data for 1/4 of every 4th spin cycle

is plotted in the summary plots for both the outbound and inbound portions

of the orbit. The envelope is shown over the data to clarify what regions

are saturated. The orbit is drawn with a heavy line in regions where the

detector is unsaturated (i.e., inside regions of higher cold plasma density

by the above criteria). Saturation is indicated by a dashed line when the

sinusoidal variation is limited by saturation during less than 3/4 of

a cycle and by a dotted line when the wave form is limited by saturation

during more than 3/4 of a cycle (nearly a square wave and indicating

significantly less cold plasma density than that at first signs of

saturation). The satellite moves outside the plasmapause at 8.5 hours

L.T. and an L of 2.4. The density becomes quite low as L increases

until a small region of cold plasma is encountered at 12.3 hours L.T.

and an L of 5.1. A larger but more chopped up region is encountered
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starting at 13.3 hours L.T. and an L of 5.1. Saturation levels are

moderate after that until the detector passes out of saturation for the

remainder of the orbit at 16.2 hours L.T. and an L of 3.9. Note that

within the isolated unsaturated regions, the density, and probably also

the temperature, of the cold plasma are very non-uniform as indicated by

the variability of the data.

Isolated cold plasma regions have been found, mainly in the noon-dusk

quadrant, during most significant negative excursions of Dst throughout

1972 (see Figure 2). During the first 3 months the satellite spent most

of its time in the dusk-midnight quadrant where it is possible in an

Re = 5.2 orbit to confuse a skirting of the bulge region with cases of

isolated cold plasma. In the cases denoted by arrows it is believed that

the data indicates an isolated region. A number of other cases (not shown)

were interpreted as related to the bulge or very questionable. However, between

April and August, the only observations of isolated regions have been

associated with Dst excursions. One case, on August 12, does not seem to

be associated with Dst, but may be from an irregular boundary. Strong

micropulsation activity was observed in the data associated with it. The

data after August was selectively.scanned during Dst enhancements only. Thus

these events are strongly associated with increases in magnetic activity and,

hence, in the convective flow toward the dayside.

The Explorer 45 orbit, while limited to observations inside Re = 5.2,

does have the advantage of returning to the area approximately every 7

hours. Thus the development of these regions can be followed. Figures 3

and 4 present data from two cases of three consecutive orbits during two

moderate negative excursions of Dst.
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Figure 3 depicts data from orbits 890 through 892 during August 27,

1972. On orbit 890 the plasmapause was encountered at L = 4.0 on 
the

outbound leg and the satellite remained outside the plasmapause until

L = 3.4 on the inbound leg. During the latter part of orbit 890 Dst

activity increased and on 891 the satellite remained within the cold

plasma over the entire orbit except for brief periods near apogee indicating

a significant shift of cold plasma in the noon-dusk quadrant 
toward the

magnetopause. On orbit 892 as activity relaxed the plasmapause was

encountered at L = 2.7 outbound (significantly lower than on 890) and

at L = 3.3 on the inbound leg of the orbit. While this series of orbits

does not depict an "isolated" region in the strict sense, it is instructive

in representing a definite transport of plasma over a relatively short time

span (compared to days as the normal filling time) in the 
sector where

isolated regions are most often seen.

Figure 4 depicts data from a different local time: orbits 516-518

during April 29 and 30, 1972. Dst activity had been up and down previously

and increased at the beginning of orbit 516. The plasmapause was crossed

at L = 3.9 and 15.1 hours L.T. with an isolated region just outside from

L = 4.1 to L = 4.5. The inbound plasmapause was at L = 3.7 and 20.1 hours

L.T. During orbit 517 activity was variable and the detector was in and

out of saturation outbound between L = 4.0 and L = 4.6 with another region

of cold plasma being encountered at L = 5.0. The inbound plasmapause

remained near L = 3.7. Activity decreased during orbit 518. The plasma-

pause was crossed at L = 3.3 and 14.5 hours L.T. outbound, and an isolated

region was observed near L = 4.9 and 16.2 hours L.T. Inbound the plasma-

pause was crossed at L = 4.0.



-6-

In all of the above orbits the encounter with isolated cold plasma

was well sunward of the bulge in Carpenter's (1966) average plasmapause

but not far from the average plasmapause of Chappel et al., (1971).

They are in the lower part of the L range within which Chappell et al.,

(1971) see their detached regions. These statements in general apply to

all detected regions after April, 1972 (regions prior to April are in the

vicinity of the bulge).

Discussion

The above data leads one to a basic premise that, as mentioned by

Chappell, et al., (1971), convection must be important in the formation of

these regions. Chappell, -et al.,-po stulated fur her ftat- somehOw-convectio --

peeled the plasma away in the afternoon-dusk sector creating a completely

detached region. More recently, Chappell (1974) has suggested that the

detachment may result from local variations in the electric field or from

a shear in the electric field set up from field aligned current shielding

(see also Jaggi and Wolf, 1973, who show shielding of convection fields at

lower L shells from field aligned currents at the inner edge of the plasma

sheet). However, unless a local plasma depletion mechanism, local

variations in the electric field, or a shear in the convection exist to

separate the plasma from the plasmasphere, Kp associated increases in

large scale convection will produce attached tails as calculated by

Chen et al., (1973) (see also previous papers of that group mentioned

in the Introduction).

In order to compare the data to convection produced effects,

boundaries have been calculated from the model used by Chen et al., (1973).

Their model assumes a dipole magnetic field, Stern's (1974) radial dependence

for the electric field in this region (convection potential is dependent
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on R2 sin 0 where R is the radial distance and 4 is the azimuthal angle

from noon), and an empirically derived Kp dependence of the magnetospheric

potential. It integrates-backward in time to determine how long a flux

tube has remained "closed" (inside 10 Re) and likely to have kept most of

its cold plasma. In Figures 3 and 4, flux tubes that have been "closed"

for 6 days or more are represented by the shaded area. A new potential

dependence was used in these calculations which was derived by forcing

the model to fit 35 plasmapause crossings located from 22 to 03 hours

local time from 0GO 3 and 5 (ghen, private communication). This potential

to a certain degree accounts for the expansion of the polar cap and

associated shrinking of the outer boundary (or the size of the region

of sunward convection) during magnetically active periods. Previously

Chen et al., (1973) and Chen and Grebowsky (1974) used a Kp dependent

potential, deduced from OGO-6 electric field data (Heppner, 1973) across

a fixed magnetosphere. The new potential dependence enhances the comparison

by removing errors introduced by fixing the size of the magnetosphere, but

the basic conclusions drawn below would still hold using previous itera-

tions of this model and are indicative of a large scale convective process

being a dominant force. Note that this model does not predict a density

in these flux tubes, only that they have been "closed". The actual density

is a function of an assumed filling rate and the path over which the tube

travelled, which may or may not have resulted in some leakage out of the

tube.

In Figure 3 the above model predicts an established plasmasphere in

orbit 890 that becomes distorted during orbit 891 from the increase in

activity, extending out beyond the S3-A orbit. The model predicts that
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this turns into a tail structure and tends to corotate as activity

decreases in orbit 892. In Figure 4 the model again predicts the

distension of the plasmasphere in the afternoon quadrant as activity

starts to increase during orbit 516. This distension turns into a tail

during orbit 517 which corotates as activity decreases during oruoi 518.

Comparisons of established boundaries, between this model and

Explorer 45 data, in general show fairly good agreement (i.e., orbit 890

in Figure 3 and the inbound boundaries in Figure 4). The agreement

becomes poorer in the more dynamical regions (i.e., inbound in orbit 892,

Figure 3). Figure 4, in particular, illustrates that the predicted tail

structures generally cover the isolated cold plasma regions defined by

Explorer 45; but the detailed structure seen in the data (also shown in

some of the data of Chappell, et al., 1971) is missing. Thus, loss of

plasma is occurring in some of the flux tubes that the model defines as

"closed". This is also true in orbit 892 in Figure 3 where Explorer 45

fails to see the inner portions of the predicted tail structure that

developed during orbit 891.

Although the model has many drawbacks in the assumptions and in the

time scale of the input variations, the comparison does confirm that

convection is a basic underlying process in the formation of these regions.

To explain the observed structure in and near the isolated regions, it is

necessary to add to large scale convection more localized processes.

Mechanisms such as the local reconfiguration observed by Barfield, et al.,

(1974) or spatially limited variations in the convection electric fields

may account for the variations and, in some cases, cause complete detachment.

As these regions convect farther and farther away from the main plasmasphere
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in moderate active to active periods, it is likely that these mechanisms

will cause detachment (see Chappell, 1974). One should be cautions about

any shear mechanisms that require a reversal of large magnitude 
electric

fields as such events are not common near the plasmapause in the satellite

electric field data (see Gurnett, 1970; Heppner, 1973).

Recently Burch and Chappell (1974) have observed that a number of

the Explorer 45 events have occurred at the inner edge of the plasma

sheet. This is partially the result of the hot plasma being influenced

by the same convective processes (Grebowsky and Chen, 1974), but may also

be a further indication that the hot-cold plasma interaction is important

in the structure of these'regions.

Chappell (1974) found a bias toward moderate Kp (3 to 5) in the

occurrence of events on 0GO-5, and that no correlation with Dst existed,

leading to a conclusion that the origin of these regions was substorm

oriented. The definite association with Dst observed here points more to

large scale convection changes and a magnetic storm orientation. 
A bias

is present in these data, however, from our low 5.2 Re 
apogee which limits

our observation region and prevents observations when the plasmasphere is

expanded during very low activity periods. The events are from areas

relatively close to the main plasmasphere, in the afternoon-evening 
sector

where these isolated regions must originate.
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Figures

Figure 1: Explorer 45 electric field experiment data showing the location

of the observed isolated cold plasma regions on November 1, 1972

and the data from which these regions are deduced (see text).

Figure 2: A plot of Dst for 1972 (Sugiura and Poros-private communication)

also showing the locations of Explorer 45 cases of observed

isolated cold plasma regions.

Figure 3: Data from three orbits on August 29, 1972, showing the develop-

ment of an isolated cold plasma region. The shaded area

represents those field lines that have been "closed" for 6 days

or more as defined by the large scale convection model (see

discussion). The outer boundary encloses field lines that have

been closed for 4 days or more. The heavy orbit trace denotes

regions where the experiment is unsaturated indicating higher

cold plasma density while the lighter dotted and dashed traces

represent degrees of saturation as discussed in the text.

Figure 4: Data from three orbits on April 29 and 30, 1972, depicting the

time evolution of an isolated cold plasma region. The shaded

area represents those field lines that have been "closed" for

6 days or more as defined by the large scale convection model

(see discussion). The heavy orbit trace denotes regions where

the experiment is unsaturated indicating higher cold plasma

density while the lighter dotted and dashed traces represent

degree of saturation as discussed in the text.
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